a2 United States Patent

Roth et al.

US009443108B1

US 9,443,108 B1
Sep. 13, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

SECURE TIMESTAMPING

Applicant: Amazon Technologies, Inc., Reno, NV
(US)

Inventors: Gregory Branchek Roth, Secattle, WA
(US); Matthew John Campagna,

Bainbridge Island, WA (US)

Assignee: Amazon Technologies, Inc., Seattle,

WA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 57 days.

Appl. No.: 14/318,314

Filed: Jun. 27, 2014

Int. CL.

GO6F 21/70 (2013.01)

HO4L 9/32 (2006.01)

U.S. CL

CPCcccue. GOG6F 21/70 (2013.01); HO4L 9/3247

(2013.01)

Field of Classification Search
CPC ... HO4AL 9/3294; HO4L 63/12; HO4L 63/123;
HO4L 9/3247, GOG6F 21/70

USPC ittt 713/178
See application file for complete search history.

Receive Request
to Validate Data
7

(56) References Cited
U.S. PATENT DOCUMENTS

7,664,958 B2* 2/2010 Moskowitz GO6T 1/0028
382/100

8,272,060 B2* 9/2012 Milliken GOG6F 21/562
713/178

2013/0125228 Al* 52013 Do .coooevvviiviiie GO6F 21/33
726/9

2014/0108800 Al* 4/2014 Lawrence ... HO4L 9/3297
713/168

2014/0218191 Al* 82014 Hollender GOSB 15/02
340/506

OTHER PUBLICATIONS

How to Time-Stamp a Digital Document Stuart Haber W. Scott
Stornetta Appeared, with minor editorial changes, in Journal of
Cryptology, vol. 3, No. 2, pp. 99-111, 1991.*

* cited by examiner

Primary Examiner — Kambiz Zand

Assistant Examiner — Benjamin Kaplan

(74) Attorney, Agent, or Firm — Davis Wright Tremaine
LLP

(57) ABSTRACT

A method and system for retrieving a current and previous
timestamp value, retrieving a previous accumulator value
reflecting a previous state of the accumulator, retrieving
information representing digests collected during an interval
window, and generating a new accumulator value based on
the retrieved values, and a storage medium with executable
code for retrieving a first and second timestamp, a first and
second accumulator value, information representing digests,
and for validating data by comparing the second accumu-
lator value with a hash of the first timestamp, the first
accumulator value, and the information.

25 Claims, 9 Drawing Sheets

700

Digest in)
Documents Table?
704
Yes
v

I Get the Data Timestamp from Documents Table

!

Get the Interval Start Time Associated with the Data
Timestamp from the Timestamp Table

v

Get the Next Interval Start Time Assocated with the Data
Timestamp from the Timestamp Table

[Get All Digests Recorded Between the Interval Start Time and]__

the Next Interval Start Time from the Documents Table

!

Get the Accumulator Value Associated with the Data
Timestamp from the Timestamp Table

!

Get The Next Accumulator Value Associated with the Data
Timestamp from the Timestamp Table

!

Calculate Hash Value as a Hash of Interval Start Time,
Accumulator Value, and Digests Between the Interval Start
Time and the Next Interval Start Time

Validation Yes: Hash Value = Next
Successful Accumulator Value?,
724 722

720

No Validation
Failed
706

U.S. Patent Sep. 13,2016 Sheet 1 of 9 US 9,443,108 B1

100

Timestamp Service 104 A/

106

FIG. 1

US 9,443,108 B1

Sheet 2 of 9

Sep. 13, 2016

U.S. Patent

00¢

¢ 'Old

90¢ | 4y

1

(¥4

8oIM8g 8seqeieq

\ — 1

4 @0Ines dweysawil|

¥0¢

Q|
N

Japiroid
90IAIBS 924n0say Bunndwo)

U.S. Patent Sep. 13,2016 Sheet 3 of 9 US 9,443,108 B1

300

Timestamp Table

N = O

5

Accumulator (d) Interval Start

H(to) To
H(to | | do || digesto, 1 || ... || digesto, m) 8!
H(ti || d; || digesty,; || ... || digesty, m) 0
H(T | [du || digesty, 1 || ... || digesty, m) T

| L 302

I

|

| Documents Table

l

Digest Timestamp
H(datanow) tnow
304

FIG. 3

U.S. Patent

-

Sep. 13, 2016 Sheet 4 of 9 US 9,443,108 B1

400

Timestamp Service

dat

a

» Digest = H(data)

402
Timestamp Server
' 406
| S | |
—Digest o | |
N | |
U 404 NS | |
I I
I I
I I
Do!cuments Table
v
Digest Timestamp
H(data) Toow
408

FIG. 4

U.S. Patent Sep. 13,2016 Sheet 5 of 9 US 9,443,108 B1

500
Initiate Timestamp Service [~_ 502
Accumulator is in
Initial State?
ime to Roll Interva Yes
Window?
Yes
| }
Set Interval Start Time to Set Interval Start Time to
Current Time Current Time _ 506
l - 514 l
Set Accumulator to Hash of Set Accumulator to Hash of
Previous Interval Start Time, Interval Start Time - 508
Previous Accumulator Value,
and Digests Collected During | - 516
the Current Interval Window
[
v
Insert Interval Start Time and
Accumulator Value Into " 510
Timestamp Table
|

FIG. 5

U.S. Patent Sep. 13,2016 Sheet 6 of 9 US 9,443,108 B1

600

Receive Request to Timestamp Data

:

Set Digest to Hash of Data

I

Set Timestamp to Current Time "_ 606

I

Insert Timestamp and Digest Into Documents
Table - 608

"= 602

= 604

FIG. 6

U.S. Patent Sep. 13,2016 Sheet 7 of 9 US 9,443,108 B1

700

Receive Request
to Validate Data

L 702

Digest in
Documents Table?

704

Yes
v

Get the Data Timestamp from Documents Table

:

Get the Interval Start Time Associated with the Data
Timestamp from the Timestamp Table '~ 710

-~ 708

v
Get the Next Interval Start Time Assocated with the Data No
Timestamp from the Timestamp Table . 712

v
Get All Digests Recorded Between the Interval Start Time and
the Next Interval Start Time from the Documents Table - 714

A 4
Get the Accumulator Value Associated with the Data
Timestamp from the Timestamp Table ' 716

v

Get The Next Accumulator Value Associated with the Data
Timestamp from the Timestamp Table " 718

v

Calculate Hash Value as a Hash of Interval Start Time,
Accumulator Value, and Digests Between the Interval Start
Time and the Next Interval Start Time

"= 720

Validation
Failed

722 - 706

Hash Value = Next
Accumulator Value?

Validation
Successful

No—p

¢—Yes

L 724

FIG. 7

US 9,443,108 B1

Sheet 8 of 9

Sep. 13, 2016

U.S. Patent

008

8 'OId

928~

aoeL8U|

_ 90INIS
228 ~\ | seoin108 1010] obei0)g BIEQ
puewag-uo
028 90IM9S 90INISS
\ yse| k8 AydesboydAin
90IM9S 90INISS
818~ juowoabeuepy 0181 abeioig eleQ
Aatjod loAsT %00|g
D0INIOS WBISAS
918 7] washs 808 Jsndwon
uonesnuUaYINY enuin
208
Japinoid

80IAI8S 924n0say Bunndwion

U.S. Patent Sep. 13,2016 Sheet 9 of 9 US 9,443,108 B1

\) -
Application
Server

906

Web 908

User

Information

910 912 914 916

FIG. 9

US 9,443,108 B1

1
SECURE TIMESTAMPING

BACKGROUND

Many modern systems utilize timestamps for various
reasons. A document management system, for example, may
log various events related to the documents it manages, such
as uploads, retrievals, modifications, deletions and the like.
As another example, many modern systems log various user
behavior, such as log in attempts and various other interac-
tions with a system. Generally, various events taking place
in connection with a computer system may be logged or
otherwise associated with timestamps. In most contexts,
however, there is a lack of assurance that timestamps are
accurate. A person with access to a system (whether the
access is authorized or not) may, for instance, may often
modify timestamps without detection of the modification. In
other instances, programming mistakes may cause unin-
tended modification to timestamps. While such timestamp
modifications are often of little consequence, in some con-
texts, inaccurate timestamps can have significant adverse
effects. As an example, legal proceedings may rely on the
ability to accurately determine the time of an occurrence of
an event and/or whether a document existed at a given time.
However, the trustworthiness of the timestamping is only as
strong as the security features preventing the timestamp
from being tampered with or forged.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments in accordance with the present
disclosure will be described with reference to the drawings,
in which:

FIG. 1 illustrates an example of a document being time-
stamped by a timestamp service;

FIG. 2 illustrates an example of a client communicating to
a timestamp service through an application programming
interface;

FIG. 3 illustrates an example of a timestamp table and its
relationship with a documents table in accordance with at
least one embodiment;

FIG. 4 illustrates an example of a timestamp server, a
documents table, and an effect of a request to timestamp a
document in accordance with at least one embodiment;

FIG. 5 is a flow chart that illustrates an example process
of rolling an interval window in accordance with at least one
embodiment;

FIG. 6 is a block diagram that illustrates an example
process of timestamping in response to a request to time-
stamp data in accordance with at least one embodiment;

FIG. 7 is a flow chart that illustrates an example process
of validating the timestamp of data in response to a request
to validate data in accordance with at least one embodiment;

FIG. 8 illustrates an example of a customer connected to
a computing resource service provider; and

FIG. 9 illustrates an environment in which various
embodiments can be implemented.

DETAILED DESCRIPTION

In the following description, various embodiments will be
described. For purposes of explanation, specific configura-
tions and details are set forth in order to provide a thorough
understanding of the embodiments. However, it will also be
apparent to one skilled in the art that the embodiments may
be practiced without the specific details. Furthermore, well-

10

15

20

25

30

35

40

45

50

55

60

65

2

known features may be omitted or simplified in order not to
obscure the embodiment being described.

Techniques described and suggested herein include a
method for providing a fast, cryptographically secure time-
stamp for database logging and data timestamping. The
method further includes associating a digital signature with
data and a timestamp. The digital signature may be a
cryptographically derived value generated with a secret
private key. Associating the digital signature with the data
and the timestamp provides further assurance that the data
and timestamp have not been modified or forged, and
further, if the asymmetric key that is used to sign logs is
revoked, the signatures used before revocation still provide
assurance that the data and timestamp was not tampered
with. Techniques described and suggested herein further
include a method for quickly, easily, and accurately verify-
ing the secure timestamp.

As noted, various users may have a need for accurate
timestamps. Techniques of the present disclosure include
systems that implement a timestamping service for data. For
example, a lawyer may have a need to have an electronic
version of a document or photo timestamped and further
have a need to provide evidence that neither the document
nor the timestamp has been modified or forged. Likewise, a
data center may maintain timestamps and logs of various
accesses to databases and files maintained by the data center,
and the data center may have a need to provide proof of
when an entry was made and that the entry and the time-
stamp was not forged or modified. Note that, while time-
stamps are used throughout for the purpose of illustration,
the scope of the present disclosure is not limited to time and
a timestamping service. In particular, techniques of the
present disclosure described herein are adaptable to various
types of sequentially updated logging. Example applications
may include, but are not limited to, cases where timestamps
are being logged, cases where submitted data or digests are
assigned an incremented auto-number value, and cases
where submitted data or digests are assigned one or more
other corresponding field values.

A timestamping service may be provided by a time
stamping authority (TSA). A digest, as used herein, is a hash
value produced from passing data (i.e., a message) through
a cryptographic hash function. The term, “hash,” as used in
this disclosure is presumed to be a cryptographically strong
hash, meaning that it is computationally infeasible to
decrypt and/or forge, and of negligible probability that two
distinct values can be computed or found such that the hash
of one distinct value may equal a hash of another distinct
value. The TSA acts as a virtual notary, wherein a user may
submit data or a digest to the TSA, wherein the TSA
associates a timestamp with the digest of the data and keeps
a record of the timestamps and submissions.

In at least one embodiment of the present disclosure, there
may be two tables, hereinafter referred to as timestamp table
and documents table. Each table may contain at least two
fields, or key-pairs, one field being a hash value (ie., a
digest) and another field being a timestamp. The timestamp
table may be used to keep track of windows of time (interval
window). The timestamp field of the timestamp table may
contain a timestamp representing when the previous window
ended and the new window began. The hash field of the hash
key pair may contain an accumulator value. In some
embodiments, a Bloom filter is used to quickly and com-
pactly prove that a document or data (hereinafter, “docu-
ment”) is present within the interval window; for example,
the Bloom filter may be stored in the timestamp table as a
separate field, stored in memory, stored on persistent stor-

US 9,443,108 B1

3

age, or at least a portion of the accumulator value may be
comprised of the Bloom filter.

The documents table may be used to keep track of
documents or digests of documents for which a user or
service requests to be timestamped. The digest field of the
documents table may contain a digest (i.e., hash value) of a
document and the timestamp field of the documents table
contains a timestamp representing the time at which the
digest was inserted into the documents table. The accumu-
lator field of the timestamp table may contain a hash of the
previous time, the previous accumulator value, and the
digests that were stored in the documents table during the
interval window. By including the previous time and previ-
ous accumulator value in the hash generated for current
accumulator field, the accumulator fields of the timestamp
table may comprise a sequence of values derived through
successive application of a hash function, known as a hash
chain. An advantage of having at least a portion of the
accumulator value being a member of a hash chain is that an
accumulator value in the sequence may not be compromised
without an attacker having access to all previous accumu-
lator values or invalidating other timestamp data. The initial
value of the accumulator field may be any seed value. In one
example, the initial value of the accumulator may be a hash
of the current timestamp.

An interval window rolls when the current interval ends
and the next interval begins. The process of rolling an
interval window includes inserting a new timestamp with the
current time, and may include a concurrent insertion of an
accumulator value, into the timestamp table. The insertion
indicates that the previous interval window ended and a new
interval window began at the time indicated by that time-
stamp. The timestamp may be any valid measure of time at
a precision as desired by the users or administrators of the
system. An example of a timestamp could be a value
reflecting a 64-bit datetime measured by the number of
microseconds from Jan. 1, 1970 coordinated universal time
or some other historical temporal reference point.

The interval window may be rolled according to an
interval, that is, a fixed length of time, such every as ten
seconds. However, the interval of the interval window may
be any value, and may comprise a multiple of the precision
of the timestamp measurement. The smaller the interval
window, however, the more frequently timestamp services
may be adding entries to the timestamp table and the
documents table. Therefore, the interval window may be of
a duration that balances precision with storage and perfor-
mance. In at least one embodiment, the rolling may not
occur according to fixed time intervals, but rolling may
occur whenever the number of digests stored in the docu-
ments table during the present interval window exceeds a
predetermined threshold. In at least another embodiment, the
rolling may be a fixed time interval by default, but the
interval window may be rolled on demand by a user or
service of a computer resource services provider. As another
embodiment usable in combination with other embodiments,
the interval window may be rolled when the number of
digests in a Bloom filter, as described below, exceeds a
threshold. As still another embodiment usable in combina-
tion with other embodiments, the interval may be rolled
based on one or more attributes within the document or data
submitted for timestamping. As a further embodiment,
usable in combination with other embodiments, the interval
may be rolled according to information associated with an
event stream. An example of this embodiment may include,
but not be limited to, a situation where audit logs are being
timestamped, wherein important and critical security events

10

15

20

25

30

35

40

45

50

55

60

65

4

may trigger a finer-grained (i.e., narrower) interval window
versus informational and low-severity messages may be
timestamped over a coarser-grained (i.e., wider) interval
window.

For example, in an initial state, the accumulator d, may be
set to the result of a hash function of timestamp T, as
follows:

T=Tgy

d=dy=H(to)

Wherein H(), as used herein, identifies a hash function
that produces a cryptographically strong hash; i.e., it would
be computationally infeasible to decode and negligible prob-
ability for H() to produce the same output for different input.
When the initial interval window rolls, a new entry may be
appended to the timestamp table as follows:

T=T;

d=d,=H(v|[do|{digestq_ o-digesto z})

Wherein T, is the new time, d, is the new accumulator
value, and {digest, ,-digest, .} is the set of all k digests
inserted into the documents table during the initial interval.
Likewise, for each interval i succeeding the initial interval,
a new entry may be appended to the timestamp table as
follows:

d=d;=H(v;_,|d;_|[{digest,_; o-digest; ; ;})

Wherein 7, is the next time, d, is the next accumulator
value, T, is the previous time, d, is the previous accumulator
value, and {digest,_, ,-digest,_; .} is the set of all k digests
inserted into the documents table during the previous inter-
val.

In at least one embodiment, the value of the accumulator
field of the timestamp table may comprise a Bloom filter
representing the digests of all documents received for time-
stamping within an interval window, rather than comprising
the digests themselves. In at least another embodiment, the
timestamp table may have a separate field for a Bloom filter
representing the digests of all documents received for time-
stamping within an interval window. In this embodiment, the
digests and timestamps may be logged in the documents
table as previously disclosed, and the Bloom filter field of
the timestamp table may be used for quickly checking
whether the digest was stamped within the interval window
without needing to rehash the full set of digests within the
interval window. As another embodiment, usable in combi-
nation with other embodiments, the disclosed timestamp
table and the documents table may actually be only one table
with a timestamp field representing the start of the interval
window, the accumulator field, and a Bloom filter field for
representing the digests of all documents received for time-
stamping within an interval window. In this embodiment, the
individual digests and corresponding timestamps may not be
logged, but rather the Bloom filter provides assurance that
the digest was timestamped within the interval window with
high probability.

In an embodiment using a Bloom filter function, B(), the
Bloom filter is based at least in part on the provided
document. For example, the Bloom filter may represent the
digests received for timestamping within the interval win-
dow such that, as each new document digest, digestyoy- 1S

US 9,443,108 B1

5

received, it may be added to the Bloom filter b,y as
follows:

byow=bnowlB(digestyom)

Then, when the interval window rolls, new entries into the
table may be added as follows:

T=T;

i

d=d;=H(v,_|d;_1|b:_1)

Wherein, b,_; is the Bloom filter for the digests of the
previous interval window. In an embodiment where the
timestamp table has a third field for a Bloom filter, this value
may be additionally added to the table as follows:

b=byow

In this embodiment, a prior state may also be included in
the Bloom filter. For example, the Bloom filter may include
an additional hash of the previous Bloom filter for added
security; i.e., to reduce the risk of an attacker moditying a
document in such a way that it generates a digest designed
to cause Bloom filter overload. For example:

T=T;

i

b=bnowlBH(b;_1))

d=d;=H(v,_|d;_1|b:_1)

In at least another embodiment, the Bloom filter field may
be a field in a table other than the timestamp table. As
another embodiment, usable in combination with other
embodiments, one or more rainbow tables may be used
instead of a Bloom filter to prove whether a digest is a
member of a set of digests timestamped within a particular
interval window without having the inherent lossiness of a
Bloom filter.

A user or service may submit data or a digest of the data
to the timestamp service for logging. Data may be submitted
in various ways, including, but not limited to, by clicking an
icon or form element on a web page of a computing resource
service provider or by a programmatic call to an API. The
data may be in a variety of electronic formats, including, but
not limited to, formats such as a text file, an encrypted file,
a bitmapped image, and an audio recording. Upon receipt,
the timestamp service may insert the digest of the data into
the documents table into the digest field and the timestamp
field is inserted with the current time. Depending on the
embodiment, the digest of the data may be the result of a
cryptographic hash function performed by the timestamp
service, performed by a different service, or performed by
the user or service submitting the data and the timestamp
service does not received the unhashed data. A document
may be submitted for timestamping multiple times, produc-
ing identical digests for insertion. In such a case, there may
be multiple timestamps associated with a particular docu-
ment digest value. In at least one embodiment, the user may
receive a notification that the digest was successfully
inserted. In at least another embodiment, the user may
receive, as a receipt, a combined hash of the interval
timestamp, the previous accumulator state, and the set of
digests logged within the interval window. As another
embodiment, usable in combination with other embodi-
ments, the receipt is further signed with a digital signature
as verification that the digest of the data was properly
timestamped.

In at least one embodiment, a Bloom filter is used to
encode the set of digests being inserted into the documents
table during each accumulator round (i.e., the interval win-

10

15

25

30

35

40

45

50

55

60

65

6

dow), and the Bloom filter and interval window timestamp
is inserted into the documents table rather than inserting
each digest with a timestamp. In at least another embodi-
ment, the documents table and timestamp table are actually
a single table with a Bloom filter entry which is an encoding
of the set of digests being inserted each time the interval
changes, rather than inserting each digest with a correspond-
ing timestamp. As another embodiment usable in combina-
tion with other embodiments, the user may receive, as a
receipt, a combined hash of the interval timestamp, the
previous accumulator state, and the Bloom filter of the
digests received within the interval window. In at least
another embodiment, the receipt is further signed with a
digital signature.

To prove that a document was created at a certain time, the
document may be hashed to produce a document digest. The
documents table may be queried to retrieve the timestamp,
Tyow» associated with the document digest, digesty,y- In
one example, the timestamp associated with the digesty oy
is the earliest (i.e., first) timestamp associated with that
document digest. In at least another embodiment, the docu-
ments table may be queried to retrieve the most recent
timestamp associated with that document digest. In this
embodiment, the timestamp may be used to determine the
last time the document was timestamped before it changed.
In at least another embodiment, the documents table may be
queried to retrieve all timestamps associated with that docu-
ment digest. In this embodiment, the timestamps may be
used to validate all the times that particular version of the
document was timestamped. As another embodiment, usable
in combination with other embodiments, the user requests to
validate that the document has a particular itemstamp.

Once Ty,p- has been retrieved, the timestamp table may
be queried to determine the timestamps defining the interval
window, T, and T, ;, during which digest,,, ;- was stamped.
The hash keys, d, and d,_,, associated with <, and T,,, may
also be retrieved from the timestamp table. With knowledge
of 7, and ,,,, the set of all digests, {digest, ,-digest, .},
logged into the documents table during the interval window
between T, and T,,, may be retrieved from the documents
table.

To prove that digest,,, ;- was timestamped at time Ty,
and that neither the document nor the timestamp has been
modified or forged, a hash of t,, d,, and {digest, ,-digest; .}
must match d,_,. That is, if d,_, H(t||d,||{digest; ,-digest, .}),
then validation is successful, indicating that the document
was timestamped within the interval window defined by, T,
and T,, |, and is therefore not likely to have been modified or
forged. However, if validation was unsuccessful, then tam-
pering has likely occurred. For example, in at least one
embodiment, a user may request assurances that a previ-
ously-submitted timestamp has a valid timestamp, and the
system responds with a validation result (e.g., success/
failure). In at least another embodiment, a user may submit
a previously-submitted document and a timestamp, wherein
the system responds with a validation that the submitted
timestamp matches a validated timestamp stored within the
system. As another embodiment, usable in combination with
other embodiments, a user may request a timestamp for a
previously-submitted document and the timestamp server
returns one or more timestamps corresponding to the one or
more submissions of the version of the document for time-
stamping, and further returns a validation result for each
timestamp.

In at least one embodiment, verification that the receipt
contained a proper digital signature provides adequate veri-
fication that the digest was properly timestamped. In at least

US 9,443,108 B1

7

another embodiment, verification is provided by checking
the digest against a Bloom filter. As another embodiment,
usable in combination with other embodiments, the system
may further walk through the chained accumulator values in
the timestamp table to ensure that the accumulator has not
been tampered with. As still another embodiment, usable in
combination with other embodiments, the system performs
verification on every digest logged within the same interval
window as the interval window in which the digest being
checked against was logged. In an alternate embodiment,
usable with other embodiments described herein, user may
specify the degree of certainty desired for the validation and
the system adjusts the type and amount of validation per-
formed according to the requested degree.

In one example, the timestamp server’s digital signature
key is logged into the timestamp table each time the interval
window is rolled. In a case where the private key of the
digital signature is published, the digital signatures, the
digital signatures associated with the timestamp and accu-
mulator values before the publication may still be consid-
ered valid. In another example, the digital signature key is
regenerated whenever an event occurs that indicates that the
key may have been compromised. In still another example,
each interval window has its own individual digital signature
key which is logged in the timestamp table each time the
interval window is rolled.

In at least one embodiment, the intervals between the
timestamping windows (i.e., when the interval window is
rolled) may be a fixed amount of time. An example of this
embodiment includes, but is not limited to where a new
timestamp and hash value is logged to the timestamp table
every ten seconds. Any fixed time interval is possible. In at
least another embodiment, the rolling of the interval window
may be performed according to random intervals. As another
embodiment, usable in combination with other embodi-
ments, rolling of the interval window may be determined by
a threshold number of digests inserted into the documents
table during that interval window. An example of this
embodiment includes, but is not limited to, where a new
timestamp and hash value is logged to the timestamp table
whenever five digest entries are made to the documents table
since the interval window started. In at least another embodi-
ment, a user, perhaps in exchange for a fee, may request
smaller time increments for the interval between timestamp-
ing windows. As still another embodiment usable in com-
bination with other embodiments, a user, perhaps in
exchange for a fee, may be enabled to force the rolling of the
interval window, thereby triggering the next timestamp and
hash value update to the timestamp table, on demand. In
such an embodiment, the user may make a call to an
application programming interface (API), which rolls the
interval window by causing the current interval window to
end and a new interval window to begin by entering a new
timestamp and hash value into the timestamp table. Yet
another embodiment, usable in combination with other
embodiments, the interval window may be rolled when the
number of digests in the Bloom filter exceeds a threshold. In
still another embodiment usable in combination with other
embodiments, a user, perhaps in exchange for a fee, a user
may be enabled to create an interval window exclusive for
timestamping of the user’s digest. In this embodiment, the
user may submit a request to timestamp the user’s data or
digest, whereupon the current interval window is rolled, the
user’s digest is logged into the documents table, and the
interval window is rolled again immediately thereafter; in
this embodiment, only the user’s digest is the sole digest
logged within that particular interval window. As another

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiment, usable in combination with other embodi-
ments, the interval window may be rolled when there are
indications that the validity of a timestamp may have been
compromised.

In at least one embodiment, for the verification proof, the
accumulator may be hash block aligned such that the inter-
nal hash state reflects the earlier hash states of the accumu-
lator, and the amount of data necessary to exhibit in the final
state may be partially shortened thereby. In this embodi-
ment, hash prefix reduction may be used to only show the
internal state of the hash function being processed for all
predecessors, for example, by returning an intermediate hash
of the hash transform.

FIG. 1 illustrates an aspect of an environment 100 in
which an embodiment of the present disclosure may be
practiced. As illustrated in FIG. 1, the environment 100 may
include a document 102 that is provided to a timestamp
service 104, whereupon it receives a corresponding time-
stamp 106. The document 102 may be any electronic format,
including, but not limited to, formats such as a text file, an
encrypted file, a bitmapped image, an audio recording, or a
cryptographic hash value. The document 102 may or may
not be passed through a cryptographic hash function prior to
being provided to the timestamp service 104. The document
102 may be provided to a timestamp service 104 to have the
document recorded with a corresponding “stamp” of the
current date and time. The timestamp service 104 may be a
service running in software or hardware, and the timestamp
service may be executed on any suitable electronic device,
such as a dedicated timestamp server, a distributed comput-
ing system, a portable computing device, a computing
resource service provider, or an electronic computing device
similar to electronic computing device 902 described in FIG.
9.

The timestamp 106 provided by the timestamp service
may be an entry into a database table associating the
contents of the document with a value representing the
current date and time to a sufficient precision and accuracy.
For example, the value may be a 64-bit datetime value that
measures the number of microseconds from Jan. 1, 1970
coordinated universal time. The timestamp service 102 may
or may not provide notification response to the entity
submitting the document 102 to the timestamp service 104.
Examples of a notification response include, but are not
limited to, an acknowledgement of receipt and successful
timestamp of the document 102, a response with at least a
portion of the present or previous accumulator value, a
response including a message and a digital signature, and a
response including a Bloom filter of the digests submitted
during a timestamp interval, the timestamp interval and
accumulator values being described in further detail below.

FIG. 2 illustrates an aspect of an environment 200 in
which an embodiment of the present disclosure may be
practiced. As illustrated in FIG. 2, the environment 200 may
include a computing device 202 communicating with a
timestamp service 204 through an API 206, the timestamp
service 204 hosted by a computing resource provider 208
and further interfacing with a database service 210, which
may also be hosted by the computing resource provider 208.
The computing device 202 may be any suitable computing
device, including but not limited to a computing devices
such as a cellular phone, a distributed computing system in
a data center, or an electronic computing device similar to
electronic computing device 902 described in FIG. 9.

The timestamp service 204 may comprise software
instructions executing on one or more computing devices,
the one or more computing devices connecting to the

US 9,443,108 B1

9

computing device 202 through a communication channel,
such as a physical local area network, wide area network,
wireless network, Internet, or other manner of communica-
tion between computing devices. The computing device 202
may access the timestamp service 204 by making a call to
the API 206. The API 206 may comprise a set of functions,
routines, protocols, or procedural libraries for accomplish-
ing the task of interacting with the timestamp service 204.
The API 206 may provide an interface between users and the
timestamp service 204 and at least ensure that users have
appropriate credentials required for the requested action by
the timestamp service.

The computing resource service provider 208 may be a
computing resource service provider similar to computing
resource service provider 102 in FIG. 1, and may host one
or more services, APIs and databases, such as the timestamp
service 204, the API 206, and the database service 210. The
timestamp service 204 may further communicate with the
database service 210, which may be hosted on the same or
different computing device as the timestamp service 204.
The database service 210 may further be hosted on one or
more computing devices, such as a distributing computing
system. The database service 210 in the environment 200
may be used to host, maintain and provide the means for
inserting, updating, and retrieving records from database
tables for a database described herein. The database serviced
by the database service 210 may be any type of database,
including a scalable database, such as a NOSQL database or
a key-value store.

FIG. 3 illustrates an aspect of an environment 300 in
which an embodiment of the present disclosure may be
practiced. As illustrated in FIG. 3, the environment 300 may
include a table with a hash key pair of an accumulator and
a timestamp, such as timestamp table 302, and a table with
a hash key pair of a digest and a timestamp, such as
documents table 304. The timestamp table 402 and the
documents table 304 may be hosted by any database or file
structure supporting hash key pairs, including a scalable
database service, such as NoSQL, the database service 210
of FIG. 2 and/or a data store similar to the data store 910
discussed in connection with FIG. 9. In the environment
300, the timestamp table 302 may define interval windows
during which digests are timestamped. The accumulator
field may be used to keep track of a state of a one-way
membership function. A one-way membership function, as
used herein, is a one-way function (i.e., a function that may
not be computationally difficult to compute for a current
value, but may not be computationally trivial to determine a
previous value from the current value), having a recurrence
relationship to a previous value of the function. The one-way
membership function may not be mathematically proven/
proveable as one-way, but have computational complexity
properties that render the function pre-image resistant.
Effectively one-way functions include, but are not limited to,
cryptographic hash functions such as message authentica-
tion codes, (e.g., hash based message authentication code
(HMACQ)), key derivation functions, such as PBKDF2 and
berypt (with the password being based at least in part on the
plaintext and the cryptographic key, e.g.) and other secure
randomization functions which may, but do not necessarily,
have a domain (set of possible inputs) that is larger than their
range (possible outputs). Other suitable functions (referred
to as “f”) for various embodiments include, but are not
limited to, functions that take at least a plaintext and
cryptographic key as input and that have a property of
preimage resistance (given a value y, the probability of
randomly generating an input x such that f{(x)=y is below a

20

25

30

40

45

10

specified threshold), second preimage resistance (given an
input x,, the probably of randomly generating another input
X,, different from x,, such that f(x,)=f(x,) is below a
specified threshold) and/or collision resistance (the prob-
ability of two different inputs resulting in the same output is
less than a specified threshold). Other hash functions usable
in accordance with the techniques of the present disclosure
include, but are not limited to, functions described in the
National Institute of Standards and Technology (NIST)
Special Publication 800-107, Revision 1 “Recommendation
for Applications Using Approved Hash Algorithms,” which
is incorporated herein by reference.

In timestamp table 302, the initial row may be comprised
of a timestamp T, at time zero (i.e., representing the start
time of the initial interval window (i.e., at i=0) in the interval
start field and a seed value of a hash of the timestamp T, in
the accumulator field. As shown, the next row may be
comprised of a timestamp T,, simultaneously representing
the end of the initial interval window and the start of the next
interval window (i.e., at i=1) in the interval start field, and
a hash of the previous timestamp T, the previous accumu-
lator value d,, and the digests collected during the initial
interval window (i.e., digest, ,-digest, ,). The digests
collected during an interval window may be retrieved from
the documents table 304, or may be held in a memory of the
one or more computing devices hosting the database service
210 of FIG. 2 and/or a data store similar to the data store 910
discussed in connection with FIG. 9 910 discussed in
connection with FIG. 9. In at least one embodiment, the
accumulator may comprise hashes based on a Bloom filter
rather than the digests.

The documents table 304 may be updated with digests of
data H(data,,,;) and a timestamp T,,,; as requested by
clients, described in further detail in FIG. 4. Each subse-
quent time the interval window is rolled, entries into the
timestamp table 302 are made similar to the next interval
window described above. For example, the next row may be
comprised of a timestamp T,, simultaneously representing
the end of the initial interval window and the start of the next
interval window (i.e., at i=2) in the interval start field, and
a hash of the previous timestamp T,, the previous accumu-
lator value d,, and the digests collected during the initial
interval window (i.e., digest, ;-digest;). Further details on
the process of updating the timestamp table may be found in
the description of FIG. 5.

FIG. 4 illustrates an aspect of an environment 400 in
which an embodiment of the present disclosure may be
practiced. As illustrated in FIG. 4, the environment 400 may
include a timestamp service 402 with a cryptographic hash
function 404 for generating a hash of digital data, which is
subsequently assigned a by a timestamp server 406 and
stored in a table, hereinafter referred to as documents table
408, having a hash key pair. The timestamp service 402 may
be a service executing on a timestamp server 406 under the
control of a computing resource service provider such as the
computing resource service provider 802 of FIG. 1. The
interval window may be rolled, as in the examples illustrated
in FIG. 3 and FIG. 5, by the timestamp service 402, or a
different service may be responsible for rolling the interval
window. Likewise, the data validation may be performed, as
in the example illustrated by FIG. 7, by the timestamp
service 402, or a different service may be responsible for the
data validation. The environment 400 depicts an example
aspect of the timestamp service 402 being used to timestamp
data.

As illustrated, the timestamp service 402 receives data
from a source. Examples of a source include, but are not

US 9,443,108 B1

11

limited to, a user, an application or service executing on one
or more computing devices, or an application or service
executing on the timestamp server 406. The timestamp
service 402 may pass the data through a cryptographic hash
function 404 to produce a digest. However, it may be that the
source provides a valid digest of the data, whereupon the
cryptographic hash function 404 may not be needed, and the
digest may pass directly to the timestamp server 406.

Upon receipt of the digest, the timestamp server inserts
the digest into the documents table 408 along with a time-
stamp representing the current time Ty~ The timestamp
server 406 may be any suitable system such as web server
906 and/or application server 908 discussed in connection
with FIG. 9. The documents table 408 may be the same or
similar table as the documents table 304 of FIG. 4, and may
be hosted by any database or file structure supporting hash
key pairs, including a scalable database service, such as
NoSQL, the database service 210 of FIG. 2 and/or a data
store similar to the data store 910 discussed in connection
with FIG. 9.

In at least one embodiment, a user, service, or resource
may have its own dedicated documents table 408. In at least
another embodiment, the documents table 408 may be
shared by and may accept digests of data and corresponding
timestamps from various different sources. In at least one
embodiment, the hash value field accepts a Bloom filter
representing a set of digests stamped during the interval
window, rather than the individual digests, and the time-
stamp field represents the start time of the interval window.
Further details on the process of timestamping data may be
found in the description of FIG. 6.

FIG. 5 is a flow chart illustrating an example of a process
500 for rolling an interval window in accordance with
various embodiments. The process 500 may be performed
by any suitable system such as web server 906 and/or
application server 908 discussed in connection with FIG. 9.
The process 500 includes a series of operations wherein a
timestamp and an accumulator value associated with an
interval window may be inserted into a database, such as a
data store similar to the data store 910 discussed in connec-
tion with FIG. 9. In 502, a service, hereinafter referred to as
a timestamp service, responsible for inserting the interval
start time and accumulator value into a table, hereinafter
referred to as a timestamp table, of the database is started.
The timestamp table may be a table with a hash key pair; that
is, the timestamp table may comprise at least two fields, a
first field being an accumulator field for containing a hash
value, and a second field being a timestamp field for
containing an interval start time value. The interval start
time may be any valid representation of a date and time to
a desired precision. An example of a timestamp field
includes, but is not limited to, a timestamp field configured
to accept a 64-bit datetime value that measures the number
of microseconds from Jan. 1, 1970 coordinated universal
time.

In 504, the device performing the process 500 determines
whether the accumulator may be in an initial state; the
accumulator may be in an initial state if no previous value
for the accumulator is present within the associated field of
the timestamp table. The accumulator may additionally be
considered to be in an initial state for various reasons,
including, but not limited to, that the previous accumulator
value may have been compromised, forged, or corrupted. If
the accumulator is in an initial state, the device performing
the process 500 proceeds to 506, wherein the current time,
as measured at a desired precision, is set to be the interval
start time value.

20

30

40

45

55

12

In 508, the initial accumulator value is seeded to be a hash
of the interval start time value. However, the initial accu-
mulator value may be set to any value, including, but not
limited to, some random value. In 510, the initial accumu-
lator value and the interval start time value are inserted into
the timestamp table. The insertion of the initial accumulator
value and the interval start time value indicates that the
initial interval window has started at the time specified by
the interval start time value. After the insertion of the initial
accumulator value and the interval start time value into the
timestamp table, the device performing the process 500
proceeds to 512, wherein the device waits until it is time to
roll an interval window.

In 512, the device performing the process 500 waits until
it is time to roll the current interval window. As noted herein,
examples of events triggering the roll of an interval window
include, but are not limited to, rolling the interval according
to a fixed interval, a random interval, according to reaching
a threshold number of digests having been timestamped,
according to exceeding a threshold size for a Bloom filter, an
indication that the validity of a timestamp has been com-
promised, on a demand from a client, or according to the
billing structure of a client utilizing the timestamp service.
When it becomes time to roll the interval window, the device
performing the process 500 proceeds to 514, where, similar
to 506, wherein the current time, as measured at a desired
precision, is set to be the interval start time value.

In 516, a new accumulator value is generated. The accu-
mulator value may be based at least in part on digests
submitted during the interval window. The accumulator
value may be further based at least in part on a previous
accumulator value, however the accumulator value may be
further based on any value, including, but not limited to, the
timestamps corresponding to the digests submitted during
the interval window, a random value, a hash of the interval
start time value, or some other value. The digests submitted
during the interval window may each be a portion of a hash
key pair with a corresponding timestamp as the other
portion, and, as noted, the corresponding timestamp may be
additionally included in the hash when calculating the
accumulator value. The digests submitted during the interval
window may be retrieved from persistent or non-persistent
storage similar to the one or more storage devices disclosed
within the description of FIG. 9, such as from random access
memory or from a database stored on one or more hard
drives.

The operation depicted by step 516 generates a new
accumulator value by generating a hash of the previous
interval start time, the previous accumulator value, and the
digests collected during the current interval window. An
advantage of basing the accumulator value at least in part on
the hash key pair of the start of the previous interval window
is that updating the accumulator in this way may make it
more difficult to modify or forge the accumulator value
without having access to all previous accumulator values
and interval start time values and/or without invalidating
previous other timestamping actions. By including the
digests collected during the current interval window in the
hash that generates the accumulator value, the determination
of whether a particular digest was or was not timestamped
within the interval window can be made by analyzing the
accumulator value. Note that, depending on the particular
embodiment and how the roll of the interval window is
triggered, the interval window may role without collecting
any digests during the interval window. In such a case, the
new accumulator value may be calculated without including
digests or may be calculated with a random, fixed, or other

US 9,443,108 B1

13

value in place of the digests. Likewise, in some instances,
only one digest may be collected during the interval window,
such as in the embodiment where the user may submit a
request to timestamp the user’s data or digest, whereupon
the current interval window is rolled, the user’s digest is
logged into the documents table, and the interval window is
rolled again immediately thereafter. In other instances, the
digests may comprise two or more digests collected during
the interval window.

After the accumulator value is generated, the device
performing the process 500 proceeds once again to 510,
wherein the generated accumulator value and the interval
start time value are inserted into the timestamp table. The
insertion of the generated accumulator value and the interval
start time value indicates that the previous interval window
has rolled and a new interval window has begun at the time
specified by the interval start time value.

FIG. 6 is a block diagram illustrating an example of a
process 600 for timestamping data in accordance with
various embodiments. The process 600 may be performed
by any suitable system such as web server 906 and/or
application server 908 discussed in connection with FIG. 9.
The process 600 includes a series of operations wherein a
request to timestamp data results in a timestamp correspond-
ing to the data being inserted into a table, hereinafter
referred to as a documents table, of a database such as a data
store similar to the data store 910 discussed in connection
with FIG. 9. Note that the operations being performed in
process 600 may be performed separately by one or more
devices, and may be performed in various orders, including
in parallel. In 602, the device performing the process 600
may receive a request to timestamp the data. In some
examples, the request to timestamp data may be received
from a service executing on a server, for example the service
may be a service requesting to timestamp log entries. In such
an example, the server may be an individual server, one or
more servers running in a data center or distributed network,
or may be a server hosted by a virtual computer system
service similar to the virtual computer system service 808
described in FIG. 8. In other examples, the request to
timestamp data may be received from one or more users or
services of the computing resource service provider, similar
to the computing resource service provider 802 described in
FIG. 8, through an programmatic call to an API or other
method.

In 604, the data corresponding to the request may be
processed through a hash function to generate a digest of the
data. Note that it is possible that the request to timestamp
data may include the digest of the data rather than the data
itself or the data may itself be a digest, the digest of the data
being a digest of a valid format to be inserted into the
documents table having been generated by the requestor or
by a different device than the device performing the process
600. In either case, the digest value to be inserted is set to
be the digest of the data. In 606, the timestamp value may
be set to be the current time. In 608, the digest value and the
timestamp value are inserted into the documents table.

In some cases, a data received for timestamping during an
interval may not be fully processed until after the interval
window rolls. In such a case, the rolling of the interval
window may be undone and the interval window re-rolled to
include the delayed data’s digest in the accumulator hash. In
another embodiment, the documents table may have a flag
field for whether the digest is included in the accumulator
value. In such an embodiment, the delayed digest’s data may
be flagged as not being in the present in the accumulator
value of the timestamp table and, during the validation

10

15

20

25

30

35

40

45

50

55

60

65

14

operations described in conjunction with 714 of FIG. 7, may
be omitted from the digests retrieved from the documents
table. In still another example, the digest of the data may be
re-timestamped such that the timestamp falls within the
current interval window.

FIG. 7 is a flow chart illustrating an example of a process
700 for validating a data timestamp in accordance with
various embodiments. The process 700 may be performed
by any suitable system such as web server 906 and/or
application server 908 discussed in connection with FIG. 9.
The process 700 includes a series of operations wherein a
device receives a request to validate data and the validation
process determines whether the data has a valid timestamp.
Note that the operations being performed in process 700
may be performed separately by one or more devices, and
may be performed in various orders, including in parallel. In
702, the device performing the process 700 may receive a
request to validate the timestamp of data. The data may be
provided to the device in the form of a digest of the data, or
as the data itself] in which case the device generates a digest
of the data by processing the data through a hash function.

In 704, the device performing the process 700 may query
a database table, hereinafter referred to as the documents
table, for one or more timestamp values corresponding to the
digest of the data to be validated. If no timestamp values
corresponding to the digest of the data are present, this
indicates that either the data corresponding to the digest was
not previously timestamped by the timestamp service oper-
ating in a manner described regarding FIG. 6 or that the data
has changed since the time it was previously timestamped.
Thus, if no timestamp values corresponding to the digest of
the data are present, the device performing the process 700
proceeds to 706, as the validation has failed. However, if one
or more timestamp values corresponding to the digest of the
data are present within the documents table, the device
performing the process 700 proceeds to 708.

In 708, the one or more timestamp values corresponding
to the digest of the data are retrieved. Depending on how
many times the data may have been previously timestamped,
one or more timestamp values may be retrieved. In at least
one embodiment, the device performing the process 700
may select the timestamp value corresponding to the digest
of the data with the earliest date/time. In this embodiment,
the validation is performed for the earliest timestamp cor-
responding to the digest of the data; for example, a user may
be interested in obtaining proof of when the document was
first created or timestamp. In at least another embodiment,
the device performing the process 700 may select the
timestamp value corresponding to the digest of the data with
the most recent date/time. In this embodiment, the user may
be interested in obtaining proof of the last known time that
the document was in a particular state. In at least another
embodiment, the device performing the process 700 may
select multiple timestamp values corresponding to the digest
of the data. In this embodiment, the user may wish to
validate multiple timestamps associated with the particular
state of the data.

In 710, the table associated with maintaining the state of
the interval windows, hereinafter referred to as timestamp
table, may be queried to determine the accumulator values
at the start time of the active interval window during the
period when the digest was timestamped. An example of this
query includes, but is not limited to, where, for each digest
timestamp, a first record may be returned for a maximum
interval window start time where the digest timestamp is
greater than or equal to the interval window start time. In
712, the timestamp table may be queried to determine the

US 9,443,108 B1

15

accumulator values at the end time of the active interval
window during the period when the digest was timestamped.
An example of this query includes, but is not limited to,
where, for each digest timestamp, a second record may be
returned for a minimum interval window start time where
the digest timestamp is less than the interval window start
time. In these examples, the first record interval window
start time and the second record interval window start time
represents the start and end times for the interval window
during which the digest of the data was timestamped.

In 714, the documents table may be queried to retrieve all
digest values that were timestamped between the first inter-
val window start time and the second interval window start
time. Because the accumulator value of the interval win-
dows in this example are based on digest values submitted
during an interval window, these digest values may provide
assurance that the timestamp data has not been forged or
replaced.

In 716, the accumulator value from the timestamp table
associated with the start of the interval window during
which the digest of the data was timestamp may be retrieved.
In the example described above for 710, this accumulator
value would be the accumulator value associated with the
first record retrieved. In 718, the accumulator value from the
timestamp table associated with the start of the interval
window associated with the interval window following the
interval window during which the digest of the data was
timestamped is retrieved. In the example described above for
712, this accumulator value would be the accumulator value
associated with the second record retrieved. Note that opera-
tions performed in 708-718 may be cumulatively performed
utilizing only one or more queries.

In 720, the interval window start time, the corresponding
accumulator value, and the digest values timestamped dur-
ing the interval window may be passed through a hash
function. In the examples described above, the hash would
be calculated based on the interval window start time of the
first record retrieved in 710, the accumulator value of the
first record retrieved in 716, and the digest values retrieved
in 714.

In 722, the hash value obtained in 720 may be compared
with the accumulator value obtained in step 718. If the hash
value matches the accumulator value, the device performing
the process 700 proceeds to 724, wherein the device indi-
cates that the timestamp of the digest of the data has been
successfully validated. Otherwise, the device performing the
process 700 proceeds to 706, wherein the device indicates
that the timestamp of the digest could not be validated,
indicating that the data, digest, timestamp, or accumulator
value may have been compromised, forged, or corrupted.

FIG. 8 shows an example of a customer connected to a
computing resource service provider in accordance with at
least one embodiment. The computing resource service
provider 802 may provide a variety of services to the
customer 804 and the customer 804 may communicate with
the computing resource service provider 802 via an interface
826, which may be a web services interface or any other type
of customer interface. While FIG. 8 shows one interface 826
for the services of the computing resource service provider
802, each service may have its own interface and, generally,
subsets of the services may have corresponding interfaces in
addition to or as an alternative to the interface 826. The
customer 804 may be an organization that may utilize one or
more of the services provided by the computing resource
service provider 802 to maintain and deliver information to
its employees, which may be located in various geographical
locations. Additionally, the customer 804 may be an indi-

10

20

25

30

40

45

50

55

60

65

16

vidual that utilizes the services of the computing resource
service provider 802 to deliver content to a working group
located remotely. As shown in FIG. 8, the customer 804 may
communicate with the computing resource service provider
802 through a network 806, whereby the network 806 may
be a communication network, such as the Internet, an
intranet or an Internet service provider (ISP) network. Some
communications from the customer 804 to the computing
resource service provider 802 may cause the computing
resource service provider 802 to operate in accordance with
one or more embodiment described herein or a variation
thereof

The computing resource service provider 802 may pro-
vide various computing resource services to its customers.
The services provided by the computing resource service
provider 802, in this example, include a virtual computer
system service 808, a block-level data storage service 810,
a cryptography service 812, an on-demand data storage
service 814, an authentication system 816, a policy man-
agement service 818, a task service 820 and one or more
other services 822. It is noted that not all embodiments
described herein include the services 808-822 described
with reference to FIG. 8 and additional services may be
provided in addition to or as an alternative to services
explicitly described herein. As described herein, each of the
services 808-822 may include one or more web service
interfaces that enable the customer 804 to submit appropri-
ately configured API calls to the various services through
web service requests. In addition, each of the services may
include one or more service interfaces that enable the
services to access each other (e.g., to enable a virtual
computer system of the virtual computer system service 808
to store data in or retrieve data from the on-demand data
storage service 814 and/or to access one or more block-level
data storage devices provided by the block level data storage
service 810).

The virtual computer system service 808 may be a col-
lection of computing resources configured to instantiate
virtual machine instances on behalf of the customer 804. The
customer 804 may interact with the virtual computer system
service 808 (via appropriately configured and authenticated
API calls) to provision and operate virtual computer systems
that are instantiated on physical computing devices hosted
and operated by the computing resource service provider
802. The virtual computer systems may be used for various
purposes, such as to operate as servers supporting a website,
to operate business applications or, generally, to serve as
computing power for the customer. Other applications for
the virtual computer systems may be to support database
applications, electronic commerce applications, business
applications and/or other applications. Although the virtual
computer system service 808 is shown in FIG. 8, any other
computer system or computer system service may be uti-
lized in the computing resource service provider 802, such
as a computer system or computer system service that does
not employ virtualization or instantiation and instead pro-
visions computing resources on dedicated or shared com-
puters/servers and/or other physical devices.

The block-level data storage service 810 may comprise
one or more computing resources that collectively operate to
store data for a customer 804 using block-level storage
devices (and/or virtualizations thereof). The block-level
storage devices of the block-level data storage service 810
may, for instance, be operationally attached to virtual com-
puter systems provided by the virtual computer system
service 808 to serve as logical units (e.g., virtual drives) for
the computer systems. A block-level storage device may

US 9,443,108 B1

17

enable the persistent storage of data used/generated by a
corresponding virtual computer system where the virtual
computer system service 808 may only provide ephemeral
data storage.

The computing resource service provider 802 also
includes a cryptography service 812. The cryptography
service 812 may utilize one or more storage services of the
computing resource service provider 802 to store keys of the
customers in encrypted form, whereby the keys may be
usable to decrypt customer 812 keys accessible only to
particular devices of the cryptography service 812.

The computing resource service provider 802 further
includes an on-demand data storage service 814. The on-
demand data storage service 814 may be a collection of
computing resources configured to synchronously process
requests to store and/or access data. The on-demand data
storage service 814 may operate using computing resources
(e.g., databases) that enable the on-demand data storage
service 814 to locate and retrieve data quickly, so as to allow
data to be provided in responses to requests for the data. For
example, the on-demand data storage service 814 may
maintain stored data in a manner such that, when a request
for a data object is retrieved, the data object can be provided
(or streaming of the data object can be initiated) in a
response to the request. As noted, data stored in the on-
demand data storage service 814 may be organized into data
objects. The data objects may have arbitrary sizes except,
perhaps, for certain constraints on size. Thus, the on-demand
data storage service 814 may store numerous data objects of
varying sizes. The on-demand data storage service 814 may
operate as a key value store that associates data objects with
identifiers of the data objects which may be used by the
customer 804 to retrieve or perform other operations in
connection with the data objects stored by the on-demand
data storage service 814.

As illustrated in FIG. 8, the computing resource service
provider 802, in various embodiments, includes an authen-
tication system 816 and a policy management service 818.
The authentication system 816, in an embodiment, is a
computer system (i.e., collection of computing resources)
configured to perform operations involved in authentication
of users of the customer. For instance, one of the services
808-814 and 818-822 may provide information from a user
to the authentication service 816 to receive information in
return that indicates whether or not the user requests are
authentic.

The policy management service 818, in an embodiment,
is a computer system configured to manage policies on
behalf of customers (such as customer 804) of the comput-
ing resource service provider 802. The policy management
service 818 may include an interface that enables customers
to submit requests related to the management of policy. Such
requests may, for instance, be requests to add, delete, change
or otherwise modify policy for a customer or for other
administrative actions, such as providing an inventory of
existing policies and the like.

The computing resource service provider 802, in various
embodiments, is also equipped with a task service 820. The
task service 820 is configured to receive a task package from
the customer 804 and enable executing tasks as dictated by
the task package. The task service 820 may be configured to
use any resource of the computing resource service provider
802, such as one or more instantiated virtual machines or
virtual hosts, for executing the task. The task service 822
may configure the one or more instantiated virtual machines
or virtual hosts to operate using a selected operating system

10

15

20

25

30

35

40

45

50

55

60

65

18

and/or a selected execution application in accordance with a
requirement of the customer 804.

The computing resource service provider 802 additionally
maintains one or more other services 822 based at least in
part on the needs of its customers 804. For instance, the
computing resource service provider 802 may maintain a
database service for its customers 804. A database service
may be a collection of computing resources that collectively
operate to run one or more databases for one or more
customers 804. The customer 804 may operate and manage
a database from the database service by utilizing appropri-
ately configured API calls. This, in turn, may allow a
customer 804 to maintain and potentially scale the opera-
tions in the database. Other services include, but are not
limited to, object-level archival data storage services, ser-
vices that manage and/or monitor other services and/or other
services.

FIG. 9 illustrates aspects of an example environment 900
for implementing aspects in accordance with various
embodiments. As will be appreciated, although a web-based
environment is used for purposes of explanation, different
environments may be used, as appropriate, to implement
various embodiments. The environment includes an elec-
tronic client device 902, which can include any appropriate
device operable to send and/or receive requests, messages or
information over an appropriate network 904 and, in some
embodiments, convey information back to a user of the
device. Examples of such client devices include personal
computers, cell phones, handheld messaging devices, laptop
computers, tablet computers, set-top boxes, personal data
assistants, embedded computer systems, electronic book
readers and the like. The network can include any appro-
priate network, including an intranet, the Internet, a cellular
network, a local area network, a satellite network or any
other such network and/or combination thereof. Compo-
nents used for such a system can depend at least in part upon
the type of network and/or environment selected. Protocols
and components for communicating via such a network are
well known and will not be discussed herein in detail.
Communication over the network can be enabled by wired
or wireless connections and combinations thereof. In this
example, the network includes the Internet, as the environ-
ment includes a web server 906 for receiving requests and
serving content in response thereto, although for other
networks an alternative device serving a similar purpose
could be used as would be apparent to one of ordinary skill
in the art.

The illustrative environment includes at least one appli-
cation server 908 and a data store 910. It should be under-
stood that there can be several application servers, layers or
other elements, processes or components, which may be
chained or otherwise configured, which can interact to
perform tasks such as obtaining data from an appropriate
data store. Servers, as used herein, may be implemented in
various ways, such as hardware devices or virtual computer
systems. In some contexts, servers may refer to a program-
ming module being executed on a computer system. As used
herein, unless otherwise stated or clear from context, the
term “data store” refers to any device or combination of
devices capable of storing, accessing and retrieving data,
which may include any combination and number of data
servers, databases, data storage devices and data storage
media, in any standard, distributed, virtual or clustered
environment. The application server can include any appro-
priate hardware, software and firmware for integrating with
the data store as needed to execute aspects of one or more
applications for the client device, handling some or all of the

US 9,443,108 B1

19

data access and business logic for an application. The
application server may provide access control services in
cooperation with the data store and is able to generate
content including, but not limited to, text, graphics, audio,
video and/or other content usable to be provided to the user,
which may be served to the user by the web server in the
form of HyperText Markup Language (“HTML”), Exten-
sible Markup Language (“XML”), JavaScript, Cascading
Style Sheets (“CSS”) or another appropriate client-side
structured language. Content transferred to a client device
may be processed by the client device to provide the content
in one or more forms including, but not limited to, forms that
are perceptible to the user audibly, visually and/or through
other senses including touch, taste, and/or smell. The han-
dling of all requests and responses, as well as the delivery of
content between the client device 902 and the application
server 908, can be handled by the web server using PHP:
Hypertext Preprocessor (“PHP”), Python, Ruby, Perl, Java,
HTML, XML or another appropriate server-side structured
language in this example. It should be understood that the
web and application servers are not required and are merely
example components, as structured code discussed herein
can be executed on any appropriate device or host machine
as discussed elsewhere herein. Further, operations described
herein as being performed by a single device may, unless
otherwise clear from context, be performed collectively by
multiple devices, which may form a distributed and/or
virtual system.

The data store 910 can include several separate data
tables, databases, data documents, dynamic data storage
schemes and/or other data storage mechanisms and media
for storing data relating to a particular aspect of the present
disclosure. For example, the data store illustrated may
include mechanisms for storing production data 912 and
user information 916, which can be used to serve content for
the production side. The data store also is shown to include
a mechanism for storing log data 914, which can be used for
reporting, analysis or other such purposes. It should be
understood that there can be many other aspects that may
need to be stored in the data store, such as page image
information and access rights information, which can be
stored in any of the above listed mechanisms as appropriate
or in additional mechanisms in the data store 910. The data
store 910 is operable, through logic associated therewith, to
receive instructions from the application server 908 and
obtain, update or otherwise process data in response thereto.
The application server 908 may provide static, dynamic or
a combination of static and dynamic data in response to the
received instructions. Dynamic data, such as data used in
web logs (blogs), shopping applications, news services and
other such applications may be generated by server-side
structured languages as described herein or may be provided
by a content management system (“CMS”) operating on, or
under the control of, the application server. In one example,
a user, through a device operated by the user, might submit
a search request for a certain type of item. In this case, the
data store might access the user information to verify the
identity of the user and can access the catalog detail infor-
mation to obtain information about items of that type. The
information then can be returned to the user, such as in a
results listing on a web page that the user is able to view via
a browser on the user device 902. Information for a particu-
lar item of interest can be viewed in a dedicated page or
window of the browser. It should be noted, however, that
embodiments of the present disclosure are not necessarily
limited to the context of web pages, but may be more

10

15

20

25

30

35

40

45

50

55

60

65

20

generally applicable to processing requests in general, where
the requests are not necessarily requests for content.

Each server typically will include an operating system
that provides executable program instructions for the general
administration and operation of that server and typically will
include a computer-readable storage medium (e.g., a hard
disk, random access memory, read only memory, etc.) stor-
ing instructions that, when executed by a processor of the
server, allow the server to perform its intended functions.
Suitable implementations for the operating system and gen-
eral functionality of the servers are known or commercially
available and are readily implemented by persons having
ordinary skill in the art, particularly in light of the disclosure
herein.

The environment, in at least one embodiment, is a dis-
tributed and/or virtual computing environment utilizing sev-
eral computer systems and components that are intercon-
nected via communication links, using one or more
computer networks or direct connections. However, it will
be appreciated by those of ordinary skill in the art that such
a system could operate equally well in a system having
fewer or a greater number of components than are illustrated
in FIG. 9. Thus, the depiction of the system 900 in FIG. 9
should be taken as being illustrative in nature and not
limiting to the scope of the disclosure.

The various embodiments further can be implemented in
a wide variety of operating environments, which in some
cases can include one or more user computers, computing
devices or processing devices which can be used to operate
any of a number of applications. User or client devices can
include any of a number of general purpose personal com-
puters, such as desktop, laptop or tablet computers running
a standard operating system, as well as cellular, wireless and
handheld devices running mobile software and capable of
supporting a number of networking and messaging proto-
cols. Such a system also can include a number of worksta-
tions running any of a variety of commercially-available
operating systems and other known applications for pur-
poses such as development and database management.
These devices also can include other electronic devices, such
as dummy terminals, thin-clients, gaming systems and other
devices capable of communicating via a network. These
devices also can include virtual devices such as virtual
machines, hypervisors and other virtual devices capable of
communicating via a network.

Various embodiments of the present disclosure utilize at
least one network that would be familiar to those skilled in
the art for supporting communications using any of a variety
of commercially-available protocols, such as Transmission
Control Protocol/Internet Protocol (“TCP/IP”), User Data-
gram Protocol (“UDP”), protocols operating in various
layers of the Open System Interconnection (“OSI”) model,
File Transfer Protocol (“FTP”), Universal Plug and Play
(“UpnP”), Network File System (“NFS”), Common Internet
File System (“CIFS”) and AppleTalk. The network can be,
for example, a local area network, a wide-area network, a
virtual private network, the Internet, an intranet, an extranet,
a public switched telephone network, an infrared network, a
wireless network, a satellite network and any combination
thereof

In embodiments utilizing a web server, the web server can
run any of a variety of server or mid-tier applications,
including Hypertext Transfer Protocol (“HTTP”) servers,
FTP servers, Common Gateway Interface (“CGI”) servers,
data servers, Java servers, Apache servers and business
application servers. The server(s) also may be capable of
executing programs or scripts in response to requests from

US 9,443,108 B1

21

user devices, such as by executing one or more web appli-
cations that may be implemented as one or more scripts or
programs written in any programming language, such as
Java®, C, C# or C++, or any scripting language, such as
Ruby, PHP, Perl, Python or TCL, as well as combinations
thereof. The server(s) may also include database servers,
including without limitation those commercially available
from Oracle®, Microsoft®, Sybase® and IBM® as well as
open-source servers such as MySQL, Postgres, SQLite,
MongoDB, and any other server capable of storing, retriev-
ing and accessing structured or unstructured data. Database
servers may include table-based servers, document-based
servers, unstructured servers, relational servers, non-rela-
tional servers or combinations of these and/or other database
servers.

The environment can include a variety of data stores and
other memory and storage media as discussed above. These
can reside in a variety of locations, such as on a storage
medium local to (and/or resident in) one or more of the
computers or remote from any or all of the computers across
the network. In a particular set of embodiments, the infor-
mation may reside in a storage-area network (“SAN”)
familiar to those skilled in the art. Similarly, any necessary
files for performing the functions attributed to the comput-
ers, servers or other network devices may be stored locally
and/or remotely, as appropriate. Where a system includes
computerized devices, each such device can include hard-
ware elements that may be electrically coupled via a bus, the
elements including, for example, at least one central pro-
cessing unit (“CPU” or “processor”), at least one input
device (e.g., a mouse, keyboard, controller, touch screen or
keypad) and at least one output device (e.g., a display
device, printer or speaker). Such a system may also include
one or more storage devices, such as disk drives, optical
storage devices and solid-state storage devices such as
random access memory (“RAM”) or read-only memory
(“ROM”), as well as removable media devices, memory
cards, flash cards, etc.

Such devices also can include a computer-readable stor-
age media reader, a communications device (e.g., a modem,
a network card (wireless or wired), an infrared communi-
cation device, etc.) and working memory as described
above. The computer-readable storage media reader can be
connected with, or configured to receive, a computer-read-
able storage medium, representing remote, local, fixed and/
or removable storage devices as well as storage media for
temporarily and/or more permanently containing, storing,
transmitting and retrieving computer-readable information.
The system and various devices also typically will include a
number of software applications, modules, services or other
elements located within at least one working memory
device, including an operating system and application pro-
grams, such as a client application or web browser. It should
be appreciated that alternate embodiments may have numer-
ous variations from that described above. For example,
customized hardware might also be used and/or particular
elements might be implemented in hardware, software (in-
cluding portable software, such as applets) or both. Further,
connection to other computing devices such as network
input/output devices may be employed.

Storage media and computer readable media for contain-
ing code, or portions of code, can include any appropriate
media known or used in the art, including storage media and
communication media, such as, but not limited to, volatile
and non-volatile, removable and non-removable media
implemented in any method or technology for storage and/or
transmission of information such as computer readable

10

15

20

25

30

35

40

45

50

55

60

65

22

instructions, data structures, program modules or other data,
including RAM, ROM, Electrically Erasable Programmable
Read-Only Memory (“EEPROM”), flash memory or other
memory technology, Compact Disc Read-Only Memory
(“CD-ROM”), digital versatile disk (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices or any other
medium which can be used to store the desired information
and which can be accessed by the system device. Based on
the disclosure and teachings provided herein, a person of
ordinary skill in the art will appreciate other ways and/or
methods to implement the various embodiments.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.

Other variations are within the spirit of the present
disclosure. Thus, while the disclosed techniques are suscep-
tible to various modifications and alternative constructions,
certain illustrated embodiments thereof are shown in the
drawings and have been described above in detail. It should
be understood, however, that there is no intention to limit the
invention to the specific form or forms disclosed, but on the
contrary, the intention is to cover all modifications, alterna-
tive constructions and equivalents falling within the spirit
and scope of the invention, as defined in the appended
claims.

The use of the terms “a” and “an” and “the” and similar
referents in the context of describing the disclosed embodi-
ments (especially in the context of the following claims) are
to be construed to cover both the singular and the plural,
unless otherwise indicated herein or clearly contradicted by
context. The terms “comprising,” “having,” “including” and
“containing” are to be construed as open-ended terms (i.e.,
meaning “including, but not limited to,”) unless otherwise
noted. The term “connected,” when unmodified and refer-
ring to physical connections, is to be construed as partly or
wholly contained within, attached to or joined together, even
if there is something intervening. Recitation of ranges of
values herein are merely intended to serve as a shorthand
method of referring individually to each separate value
falling within the range, unless otherwise indicated herein
and each separate value is incorporated into the specification
as if it were individually recited herein. The use of the term
“set” (e.g., “a set of items”) or “subset” unless otherwise
noted or contradicted by context, is to be construed as a
nonempty collection comprising one or more members.
Further, unless otherwise noted or contradicted by context,
the term “subset” of a corresponding set does not necessarily
denote a proper subset of the corresponding set, but the
subset and the corresponding set may be equal.

Conjunctive language, such as phrases of the form “at
least one of A, B, and C,” or “at least one of A, B and C,”
unless specifically stated otherwise or otherwise clearly
contradicted by context, is otherwise understood with the
context as used in general to present that an item, term, etc.,
may be either A or B or C, or any nonempty subset of the set
of A and B and C. For instance, in the illustrative example
of a set having three members, the conjunctive phrases “at
least one of A, B, and C” and “at least one of A, B and C”
refer to any of the following sets: {A}, {B}, {C}, {A, B},
{A, C}, {B, C}, {A, B, C}. Thus, such conjunctive langnage
is not generally intended to imply that certain embodiments
require at least one of A, at least one of B and at least one
of C each to be present.

US 9,443,108 B1

23

Operations of processes described herein can be per-
formed in any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context. Pro-
cesses described herein (or variations and/or combinations
thereof) may be performed under the control of one or more
computer systems configured with executable instructions
and may be implemented as code (e.g., executable instruc-
tions, one or more computer programs or one or more
applications) executing collectively on one or more proces-
sors, by hardware or combinations thereof. The code may be
stored on a computer-readable storage medium, for example,
in the form of a computer program comprising a plurality of
instructions executable by one or more processors. The
computer-readable storage medium may be non-transitory.

The use of any and all examples, or exemplary language
(e.g., “such as”) provided herein, is intended merely to better
illuminate embodiments of the invention and does not pose
a limitation on the scope of the invention unless otherwise
claimed. No language in the specification should be con-
strued as indicating any non-claimed element as essential to
the practice of the invention.

Embodiments of this disclosure are described herein,
including the best mode known to the inventors for carrying
out the invention. Variations of those embodiments may
become apparent to those of ordinary skill in the art upon
reading the foregoing description. The inventors expect
skilled artisans to employ such variations as appropriate and
the inventors intend for embodiments of the present disclo-
sure to be practiced otherwise than as specifically described
herein. Accordingly, the scope of the present disclosure
includes all modifications and equivalents of the subject
matter recited in the claims appended hereto as permitted by
applicable law. Moreover, any combination of the above-
described elements in all possible variations thereof is
encompassed by the scope of the present disclosure unless
otherwise indicated herein or otherwise clearly contradicted
by context.

All references, including publications, patent applications
and patents, cited herein are hereby incorporated by refer-
ence to the same extent as if each reference were individu-
ally and specifically indicated to be incorporated by refer-
ence and were set forth in its entirety herein.

What is claimed is:

1. A computer-implemented method, comprising:

under the control of one or more computer systems

configured with executable instructions,
upon an occurrence of an event for triggering a roll of

an interval window,

retrieving a first interval time value that reflects a
first interval time;

retrieving a second interval time value that reflects a
second interval time;

retrieving a previous accumulator value that reflects
a previous output of a hash function;

retrieving information that represents digests of data
collected during a time period defined by the
second interval time value and the first interval
time value;

generating a current accumulator value based at least
in part on hashing a value based at least in part on
the second interval time value, the previous accu-
mulator value, and the information; and

storing, in persistent storage, the first interval time
value and the current accumulator value as a
corresponding hash key pair such that the corre-
sponding hash key pair is usable at least in part to
validate:

25

35

40

45

50

24

integrity of data corresponding to the digests; and
that the digests were collected during the time
period.

2. The computer-implemented method of claim 1,
wherein the information that represents digests of data is a
Bloom filter.

3. The computer-implemented method of claim 1,
wherein storing further includes storing a Bloom filter
encoding the digests of the data.

4. The computer-implemented method of claim 1,
wherein the information that represents digests of data
comprises a plurality of digest-timestamp pairs.

5. A system, comprising one or more computing devices
configured to provide one or more services, the one or more
services configured to, upon an occurrence of an event:

retrieve a first interval time value;

retrieve a second interval time value;

retrieve a previous accumulator value reflecting a previ-

ous output of a function;

retrieve information representing digests of data collected

during a time period defined by the second interval time
value and the first interval time value;

generate a current accumulator value based at least in part

on the second interval time value, the previous accu-
mulator value, and the information; and

store the first interval time value and the current accu-

mulator value such that the first interval time value and
the current accumulator value is usable at least in part
to validate:

integrity of data corresponding to the digests; and
that the digests were collected during the time period.

6. The system of claim 5, wherein the information rep-
resenting digests is retrieved from one or more data stores,
the one or more data stores configured to associate digests
with timestamps and associate accumulator values with
interval time values.

7. The system of claim 5, wherein the event occurs as a
result of a fixed time interval passing, a received request to
roll an interval window, or one or more objects in the
information exceeding a threshold.

8. The system of claim 5, wherein:

the first interval time value is based at least in part on a

clock;

the second interval time value and the previous accumu-

lator value are retrieved from a data store; and

the first interval time value and the current accumulator

value are provided to the data store.

9. The system of claim 5, wherein the first interval time
value and the second interval time value are date-time values
measured from a temporal reference point.

10. The system of claim 5, wherein the event occurs as a
result of a number of digests in a Bloom filter exceeding a
threshold.

11. The system of claim 5, wherein the information
representing digests comprises a collection of the digests of
the information.

12. The system of claim 5, wherein the one or more
services are further configured to, on or after a time indi-
cated by the first interval time value:

receive a request to timestamp a document;

generate a digest of the document;

retrieve a current time; and

provide the digest and the current time.

13. The system of claim 12, wherein the one or more
services are services of a computing resource services
provider and the request to timestamp the document is
provided by the one or more services.

US 9,443,108 B1

25

14. The system of claim 12, wherein the one or more
services are services of a computing resource services
provider and the request to timestamp the document is
provided by a customer of the computing resources services
provider.

15. The system of claim 12, wherein the system is further
configured to, in response to the request to timestamp a
document, provide the current time and the current accu-
mulator value.

16. The system of claim 12, wherein the system is further
configured to, in response to the request to timestamp a
document, provide a message signed with a digital signature
indicating successful storage of the digest of the document.

17. The system of claim 12, wherein the event occurs in
response to detecting an attribute within the document for
rolling an interval window.

18. A non-transitory computer-readable storage medium
having stored thereon executable instructions that, when
executed by one or more processors of a computer system,
cause the computer system to at least:

receive a request from a requestor to validate data; and

in response to receipt of the request:

retrieve a digest timestamp value corresponding to a
digest of the data;

retrieve a first interval time value and a corresponding
first accumulator value, wherein the first interval
time value indicates a start time of an interval
window of the digest timestamp and the correspond-
ing first accumulator value reflects a first output of a
function;

retrieve a second interval time value and a correspond-
ing second accumulator value, wherein the second
interval time value indicates an end time of the
interval window of the digest timestamp and the
corresponding second accumulator value reflects a
second output of the function;

retrieve information representing digests having time-
stamp values between the first interval time value
and the second interval time value;

generate a hash based at least in part on the first interval
time value, the corresponding first accumulator
value, and the information;

validate the data by comparing the hash with the
corresponding second accumulator value to obtain a
validation result; and

output the validation result to the requestor.

10

15

20

25

30

35

40

26

19. The non-transitory computer-readable storage
medium of claim 18, wherein the instructions further com-
prise instructions that, when executed by the one or more
processors, cause the computer system to at least:

receive an unvalidated timestamp value; and

determine whether the unvalidated timestamp value cor-
responds to the digest timestamp value.

20. The non-transitory computer-readable storage
medium of claim 18, wherein the instructions that cause the
computer system to retrieve information representing
digests further comprise instructions that, when executed by
the one or more processors, cause the computer system to at
least retrieve a Bloom filter encoding of the digests as the
information.

21. The non-transitory computer-readable storage
medium of claim 18, wherein the digest timestamp value
corresponding to the digest of the data is the earliest digest
timestamp value corresponding to the digest of the data.

22. The non-transitory computer-readable storage
medium of claim 18, wherein the digest timestamp value
corresponding to the digest of the data is the most recent
digest timestamp value corresponding to the digest of the
data.

23. The non-transitory computer-readable storage
medium of claim 18, wherein the digest timestamp value
corresponding to the digest of the data is retrieved from a
first data store that associates digests with timestamps and
wherein the first interval time value and the corresponding
first accumulator values are retrieved from a second data
store that associates accumulator values with interval time
values.

24. The non-transitory computer-readable storage
medium of claim 18, wherein the instructions that cause the
computer system to validate the data further include instruc-
tions that cause the computer system to respond with veri-
fication proof of the comparing.

25. The non-transitory computer-readable storage
medium of claim 24, wherein at least a portion of the
verification proof comprises a hash prefix reflecting an
internal state of the first accumulator value.

#* #* #* #* #*

